Fluid Phase Equilibria Modelling for Carbon Dioxide +Methanol System with Cubic Equations of State

SERGIU SIMA¹, SIMONA IONITA¹, CATINCA SECUIANU^{1,2*}, VIOREL FEROIU^{12*}, DAN GEANA¹

¹ University Politehnica of Bucharest, Department of Inorganic Chemistry, Physical Chemistry & Electrochemistry, 1-7 Gh. Polizu Str., 011061, Bucharest, Romania

² Imperial College London, Department of Chemical Engineering, South Kensington Campus, SW7 2AZ London, United Kingdom

The purpose of this paper is to compare three cubic equations of state to model the phase behaviour of carbon dioxide + methanol system. All available literature data for carbon dioxide + methanol system were modeled with cubic equations of state (EoS) using classical van der Waals (two-parameter conventional mixing rule, 2PCMR) mixing rules. A single set of interaction parameters was used to model the global phase behaviour in the binary mixture carbon dioxide + methanol.

Keywords: vapour–liquid equilibria, carbon dioxide, methanol, equations of state(EoS)

An important role in cost-effective design and operation of chemical and biochemical plants plays the accurate knowledge of phase behaviour and of thermophysical properties of fluids [1-5]. While the thermodynamic properties determine the feasibility of a given process, the transport properties have a major impact on sizing of the equipment [1-5]. Accurate and reliable thermodynamic and transport property data, over a wide range of mixtures and conditions, are required due to the diversity of products and applications [1-5]. As the experiments are usually expensive and very time-consuming, equation of state models are the most common approach for the correlation and prediction of phase equilibria and properties of the mixtures.

In this paper we present the prediction results for the carbon dioxide + methanol binary systems by three cubic equations of state coupled with classical van der Waals mixing rules (2PCMR). The equations of state used are the general cubic equation of state (GEOS) [6-9], Peng-Robinson (PR) [10], and Soave-Redlich-Kwong (SRK) [11]. Following the same modeling procedure as in our previous papers [12-23], a single set of interaction parameters,

representing well the critical pressure maximum (CPM) and avoiding a false upper critical end point (UCEP) at high temperatures, was used to model the phase behaviour of the carbon dioxide + methanol system. The model results were compared to all available literature VLE data. The results show a satisfactory agreement between the model and the experimental data.

Modeling

The modeling of phase behaviour of this system was made with the GEOS [6-9], PR [10], and SRK [11] EoS coupled with classical van der Waals mixing rules (2PCMR). The GEOS [6] equation of state is:

$$P = \frac{RT}{V-b} - \frac{a(T)}{\left(V-d\right)^2 + c} \tag{1}$$

with the classical van der Waals mixing rules:

Fig. 1. *P-T* fluid phase diagram of carbon dioxide (1) + methanol (2) system: (-), Chobanov et al. [78]; (*), Liu et al. [79]; (+), Zhu et al. [74]; ($_$), Zhang et al. [80]; (\triangle), Joung et al. [67]; (\blacksquare), Yeo et al. [81]; (o), Ziegler et al. [33]; (\blacktriangle), Gurdial et al. [82]; (\square), Leu et al. [75]; (\bigstar), Brunner et al. [83]; (\diamondsuit), Brunner [55]; (\times), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [83]; (\diamondsuit), Brunner [55]; (\times), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [83]; (\diamondsuit), Brunner [55]; (\times), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al. [34]; (\bullet), critical points of pure components, [84]; \square , Zhang et al. [75]; (\bigstar), Semenova et al

^{*} email: c_secuianu@chim.upb.ro; v_feroiu@chim.upb.ro; Tel.: +4021 4023988

$$a_{ij} = (a_i a_j)^{1/2} (1 - k_{ij}); \ b_{ij} = \frac{b_i + b_j}{2} (1 - l_{ij}); \ c_{ij} = \pm (c_i c_j)^{1/2}$$
(4)

with "+" for c_{i} , c_{j} > 0 and "-" for c_{i} , c_{j} < 0. Generally, negative values are common for the c parameter of pure components.

The four parameters a, b, c, d for a pure component are expressed by:

$$a = \frac{R^2 T_c^2}{P_c} \beta(T_r) \Omega_a \qquad b = \frac{R T_c}{P_c} \Omega_b \qquad (5)$$

$$c = \frac{R^2 T_c^2}{P_c^2} \Omega_c \qquad \qquad d = \frac{R T_c}{P_c} \Omega_d \qquad (6)$$

Setting four critical conditions, with $\alpha_{\rm c}as$ the Riedel's criterion:

$$P_{r} = 1; \left(\frac{\partial P_{r}}{\partial V_{r}}\right)_{T_{r}} = 0; \left(\frac{\partial^{2} P_{r}}{\partial V_{r}^{2}}\right)_{T_{r}} = 0; \alpha_{c} = \left(\frac{\partial P_{r}}{\partial T_{r}}\right)_{V_{r}}$$
(7)

at $T_r = 1$ and $V_r = 1$, the expressions of the parameters $\Omega_{a'}$, $\Omega_{b'} \Omega_{c'} \Omega_{c}$, Ω_{d} are obtained:

$$\Omega_a = (1-B)^3; \ \Omega_b = Z_c - B; \ \Omega_c = (1-B)^2 (B - 0.25)$$
(8)

Fig. 2. Comparison of literature VLE data and calculations by thermodynamic models for carbon dioxide + methanol at different temperatures: symbols, experimental data; lines, predictions by PR and SRK ($k_{12} = 0.018, l_{12} = 0.005$) respectively

$$\Omega_d = Z_c - \frac{(1-B)}{2} \qquad \qquad B = \frac{1+m}{\alpha_c + m} \tag{9}$$

where $P_{\rm r}, T_{\rm r}, V_{\rm r}$ are the reduced variables and $Z_{\rm c}$ is the critical compressibility factor.

The temperature function used is:

$$a(T) = a \cdot \beta(T_r); \ \beta(T_r) = T_r^{-m}$$
(10)

The GEOS parameters m and α_c were estimated by constraining the EoS to reproduce the experimental vapour pressure and liquid volume on the saturation curve between the triple point and the critical point [6].

The SRK [11] and PR [10] EoSs respectively are:

$$P = \frac{RT}{V-b} - \frac{a(T)}{V \cdot (V+b)} \tag{11}$$

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + b(V - b)}$$
(12)

As pointed out previously [8], the relations (8) and (9) are general forms for all the cubic equations of state with two, three, and four parameters. The parameters of the SRK EoS can be obtained from the eqs. (8) and (9) by setting [6-9] the following restrictions: $\Omega_c = -(\Omega_b/2)^2$ and $\Omega_d = -\Omega_b/2$.

Fig. 3. Comparison of literature VLE data and calculations by thermodynamic models for carbon dioxide + methanol at different temperatures: symbols, experimental data; lines, predictions by GEOS $(k_{12} = 0.030, l_{12} = 0.007)$, PR, and SRK $(k_{12} = 0.018, l_{12} =$ 0.005) respectively

$$\Omega_{c} = (1-B)^{2} (B-0.25) = -\frac{(Z_{c}-B)^{2}}{4}$$
(13)

$$\Omega_d = Z_c - 0.5(1 - B) = -\frac{(Z_c - B)}{2}$$
(14)

It results: Z_c (SRK) = 1/3, and the relation for *B* (SRK)

$$B = 0.25 - \frac{1}{36} \left(\frac{1 - 3B}{1 - B}\right)^2 \tag{15}$$

Solving iteratively this equation gives B(SRK) = 0.2467, and correspondingly

 $\Omega_a(SRK) = (1-B)^3 = 0.42748$ and $\Omega_b(SRK) = Z_c - B = 0.08664$

For PR EoS we set the restrictions [6-9]: $\Omega_c = -2(\Omega_b)^2$ and $\Omega_d = \Omega_b$. It results

$$B = 0.25 - \frac{1}{8} \left(\frac{1 - 3B}{1 - B} \right)^2 \tag{16}$$

$$Z_c = \frac{1+B}{4} \tag{17}$$

giving B(PR) = 0.2296 and $Z_c(PR) = 0.3074$.

The calculations were made using the software packages PHEQ, developed in our laboratory [24], and GPEC [25]. The calculation of the critical curves implemented in PHEQ is based on the method proposed

Fig. 4. Comparison of literature VLE data and calculations by thermodynamic models for carbon dioxide + methanol at different temperatures: symbols, experimental data; lines, predictions by GEOS ($k_{12} = 0.030, l_{12} = 0.007$), PR, and SRK ($k_{12} = 0.018, l_{12} = 0.005$) respectively

Fig. 5. Comparison of literature VLE data and calculations by thermodynamic models for carbon dioxide + methanol at different temperatures: symbols, experimental data; lines, predictions by GEOS (k_{12} = 0.030, l_{12} = 0.007), PR, and SRK (k_{12} = 0.018, l_{12} = 0.005) respectively

by Heidemann and Khalil [26], with numerical derivatives given by Stockfleth and Dohrn [27].

Results and discussions

The carbon dioxide + methanol binary system can be attributed to type I phase diagram, according to the classification of van Konynenburg and Scott [28]. In the *P*-*T* diagram [29], this type is characterized by one critical curve which runs continuously from the critical point of more volatile component (carbon dioxide) to the critical point of the less volatile component (methanol). In this study, the GEOS, PR, and SRK equations are used in a semi predictive approach to obtain a set of binary parameters yielding good results in the binary system carbon dioxide + methanol (including VLE in the entire temperature range and critical points).

Previously [30], it was shown that many thermodynamic models fail to predict correctly the behavior of this system. While experimental data suggest that this system behaves like type I, the models falsely predict liquid–liquid splitting at low temperatures, which is a different type of phase behaviour. The three models considered in this study also predict type II phase diagram, meaning that another liquid = liquid (L = L) critical curve appears, which intersects in an upper critical endpoint (UCEP) with a three phase liquidliquid-vapor (LLV) equilibrium line, which goes to lower temperatures. Therefore, the GEOS, PR, and SRK parameters were calculated to obtain the experimental value of the vapour–liquid critical pressure maximum (CPM) simultaneously with decreasing the temperature of the UCEP at lower temperature. The choice of this temperature for the false UCEP is justified by the existence

Fig. 6. Comparison of literature VLE data and calculations by thermodynamic models for carbon dioxide + methanol at different temperatures: symbols, experimental data; lines, predictions by GEOS (k_{12} = 0.030, l_{12} = 0.007), PR, and SRK (k_{12} = 0.018, l_{12} = 0.005) respectively

in the literature of an experimental isotherm at 213.15 K. The region of the type I (II) phase behaviour can be obtained by tracing the tricritical boundary curve in the k_{12} - l_{12} diagram [31]. These types of phase behaviour are located on the left side of the tricritical boundary [31]. Our procedure leads to parameters located in this area. In a recent paper [32], we calculated a set of binary parameters using the k_{12} - l_{12} method [22,31] to obtain simultaneously the experimental value of the vapour–liquid critical pressure maximum (CPM) and the temperature of UCEP with the GEOS equation. The UCEP temperature (~200 K) and CPM (165.0 bar [33]) have been traced by paths in k_{12} - l_{12} diagram, and their intersection has given the values of the interaction parameters. The values of the interaction binary parameters (k_{12} and l_{12}) fulfilling these requirements are $k_{12} = 0.030$ and $l_{12} = 0.007$ [32]. This set of interaction parameters was then used to predict the topology of phase behaviour and the critical and the bubble- and dew-point lines.

In this paper, using a similar procedure as described above, a unique set of binary interaction parameters was determined for both the SRK and PR equations. Thus, the set of binary interaction parameters is $k_{12} = 0.018$, $l_{12} = 0.005$ ($T_{UCEP} \sim 180$ K, $P_{CPM} \sim 166$ bar for PR; $T_{UCEP} \sim 195$ K, $P_{CPM} \sim 166.1$ bar for SRK respectively). Figure 1 presents the comparison of the three models with all available critical data (12 data sets) for the binary system studied. It can be seen that the critical experimental data are scattered (fig. 1. (a)). The highest deviation in pressure is about 20 bars [34]. While the difference in the critical pressure maximum is about two bars among the different sets, the difference in the experimental critical temperature is about 11 K. The best prediction of the critical curve is achieved by GEOS, followed by PR and SRK EoS, which show a similar behaviour (fig. 1. (b)). GEOS predicts also better the critical points of isotherms located at higher temperatures, while PR and SRK predict better the critical points of isotherms located at lower temperatures. It can be also seen that both PR and SRK predict the CPM at a higher temperature than the experimental one.

Nr. Crt.	<i>T</i> /K	Prange/bar	NEXP ^a	Reference
1	213.15	1.0-2.9	3	Shenderei et al. [36]
2	213.15	0.98-4.12	4	Shenderei et al. [36]
3	213.15	1.12-3.94	5	Schneider [37]
4	213.15	1.01-4.26	4	Katayama and Nitta [38]
5	223.15	3.04-6.08	4	Takeuchi et al. [39]
6	228.15	1.0-3.9	4	Shenderei et al. [36]
7	228.15	0.98-8.04	8	Shenderei et al. [36]
8	228.15	1.08-7.40	12	Schneider [37]
9	228.15	1.01-8.31	7	Katayama and Nitta [38]
10	230.00	6.9-8.83	6	Hong and Kobayashi [40]
11	233.15	3.0-8.9	6	Weber et al. [41]
12	237.15	1.0-5.9	6	Shenderei et al. [36]
13	237.15	0.98-11.28	11	Shenderei et al. [36]
14	237.15	1.82-10.43	6	Schneider [37]
15	237.15	1.01-11.65	9	Katayama and Nitta [38]
16	243.15	2.1-13.5	6	Chang and Rousseau [39]
17	243.15	2.03-13.88	8	Yorizane et al. [40]
18	247.15	1.0-8.8	9	Shenderei et al. [36]
19	247.15	0.98-15.69	16	Shenderei et al. [36]
20	247.15	0.01-13.78	8	Schneider [37]
21	247.15	1.01-15.20	10	Katayama and Nitta [38]
22	248.15	3.3-16.9	7	Weber et al. [41]
23	248.15	3.3-16.9	7	Zeck [44]
24	248.15	5.07-15.20	5	Takeuchi et al. [39]
25	250.00	6.9-17.51	7	Hong and Kobayashi [40]
26	253.15	5.6-15.2	6	Weber et al. [41]
27	258.00	5.10-16.52	4	Ferrell et al. [45]
28	258.15	2.2-21.6	6	Chang and Rousseau [42]
29	258.15	4.05-20.27	5	Yorizane et al. [43]
30	263.15	7.92-25.27	4	Naidoo et al. [46]
31	273.15	4.5-33.0	9	Weber et al. [41]
32	273.15	6.6-34.9	20	Weber et al. [41]
33	273.15	1.94-32.3	6	Chang and Rousseau [42]

Table 1LITERATURE EXPERIMENTAL DATA FORTHE CARBON DIOXIDE + METHANOLBINARY SYSTEM

34	273.15	6.9-34.47	10	Hong and Kobayashi [40]
25	272.15	66240	20	
33	273.15	0.0-34.9	20	Zeck [44]
36	273.15	10.13-30.40	4	Takeuchi et al. [39]
37	273 15	8 91-32 73	4	Naidoo et al [46]
20	272.15	0.04 16 02	-	
30	275.15	0.04-16.93	0	Schneider [37]
39	273.15	6.89-22.6	4	Krichevskii and Lebedeva [47]
40	273 15	5 07-33 34	8	Vorizane et al [43]
41	070 15	150 20 2	0	
41	2/8.15	15.0-39.3	8	Bezanehtak et al. [48]
42	288.15	15.0-49.5	7	Bezanehtak et al. [48]
43	288.15	1 3-30 0	10	Gui et al [40]
44	200.15	1.5-50.9	10	
44	290.00	6.9-51.64	9	Hong and Kobayashi [40]
45	291.15	5.6-43.3	11	Chang et al. [50]
46	291.15	5 6-49 3	12	Changet al [51]
47	202.15	3.0 19.5	12	
4/	293.13	1.9-37.29	/	Seculariu et al. [20]
48	298.15	9.5-47.6	3	Rousseau et al. [52]
49	298 15	2 2-61 3	13	Katavama et al [53]
50	200 15	7.0 50 5	0	
50	290.15	1.9-39.3	0	Ungaki and Katayama [54]
51	298.15	7.8-50.8	11	Weber et al. [41]
52	298.15	2.6-54.5	8	Chang and Rousseau [42]
52	200 15	17 2 57 5	12	
55	298.15	17.5-37.5	15	Hong and Kobayashi [40]
54	298.15	15.0-60.8	9	Bezanehtak et al. [48]
55	298.15	17.3-62.3	17	Brunner et al. [55]
56	208 15	5 0 50 0	20	Sequience et al [56]
50	200.15	5.0-59.9	20	Seculatiu et al. [50]
57	298.15	5.0-64.34	31	Seculanu et al. [20]
58	298.15	2.2-43.4	14	Gui et al. [49]
59	298.15	13 0-54 2	6	Laursen et al [57]
60	200.15	(80 40 22	6	
00	298.15	6.89-40.23	0	Krichevskii and Lebedeva [47]
61	298.16	9.2-57.1	17	Chang et al. [50]
62	298 16	9 2-57 1	17	Chang et al [51]
62	200.10	15 4 62 1	0	Delahard et al. [50]
05	298.40	13.4-03.1	ð	Reignard et al. [58]
64	303.15	9.6-63.3	10	Secuianu et al. [32]
65	303.15	12.40-55.10	7	Laursen et al [57]
66	202.15	8 40 54 0	6	Sahuvinahamman at al [50]
00	303.15	8.40-54.0	0	Schwinghammer et al. [59]
67	303.15	32.40-64.10		Pinto et al. [60]
68	303.18	8.9-63.2	16	Chang et al. [50]
69	303.18	56-433	16	Chang et al [51]
70	202.05	166600	10	
70	505.85	10.0-09.0	ð	Reignard et al. [58]
71	308.15	13.2-70.1	16	Chang et al. [50]
72	308.15	40.5-73.1	6	Roskar et al. [61]
73	308 15	15 4-74 3	0	Bezonehtak et al [48]
74	200.15	12.2.70.1	10	State in the state of the state
/4	508.15	13.2-70.1	10	Chang et al. [51]
75	308.15	2.4-50.4	21	Gui et al. [49]
76	308.15	22.29-78.22	7	Snedeker [62]
77	310.00	607743	10	Hong and Kabayashi [40]
77	510.00	0.9-77.45	19	filling and Kobayasin [40]
78	310.15	21.5-76.0	17	Secularianu et al. [56]
79	310.15	4.8-76.0	19	Secuianu et al. [20]
80	313.05	11 39-75 34	11	Fibaccouch et al [63]
01	212.11	26 20 70 10	12	
01	515.11	30.20-79.10	13	Sato et al. [64]
82	313.14	13.2-80.3	17	Chang et al. [50]
83	313.14	13.2-77.2	17	Chang et al. [51]
84	313 14	5 73-78 73	16	Reassi et al [65]
07	212.14	5.75-78.75	10	Raessi et al. [05]
85	313.14	5./3-/8./3	16	Tochigi et al. [66]
86	313.15	6.9-81.5	12	Joung et al. [67]
87	313.15	5.8-80.6	9	Obgaki and Katayama [54]
88	313 15	86774	õ	Somiony at al. [22]
00	313.15	8.0-77.4	0	Seculatiu et al. [52]
89	313.15	20.11-75.06	8	Kodama et al. [68]
90	313.15	15.90-63.40	5	Laursen et al. [57]
91	313 15	12 91-67 58	8	Naidoo et al [46]
02	212.15	12.01 07.00	5	
92	515.15	42.0-78.2	5	Pinto et al. [60]
93	313,20	7.0-82.1	13,	Yoon et al. [69]
24	515.20	9.5-79.50	/	Ale et al. [70]
95	313.40	6.8-77.1	8	Suzuki et al. [71]
96	313.45	19.8-82.8	8	Reighard et al. [58]
97	313 75	2 96-78 85	13	Xia et al [72]
09	210 15	17550	22	Gui et al [40]
70	518.13	1.2-33.8	22	Gui et al. [49]
99	320.15	6.0-89.5	11	Joung et al. [67]
100	322.85	23.0-96.3	7	Reighard et al. [58]
101	322 95	6 89-55 03	8	Krichevskii and Labadava [4]
102	222.95	0.00-00.00	14	II. II. I.
102	323.15	9.9-95.5	14	Hong and Kobayashi [40]
103	323.15	53.3-99.6	4	Roskar et al. [61]
104	323.15	9.9-95.5	14	Brunner et al. [55]
105	323 15	61 1-94 8	4	Secularu et al [73]
106	202 15	10 2 05 1	10	
100	523.15	10.3-93.1	10	Seculariu et al. [20]
107	323.15	5.0-98.0	15	Semenova et al. [34]
108	323.15	60.0-96.0	7	Zhu et al. [74]
109	323 20	4 4-95 0	10	Leu et al [75]
110	323.20	7.0 105.0	10	
110	220.00	7.8-105.9	12	Joung et al. [67]

11300.00 $6.9-106.46$ 13Hong and Kobayashi [40]112330.03 $86.20-107.10$ 4Sato et al. [64]113332.65 $26.3-111.9$ 6Reighard et al. [58]114333.15 $105.78-109.94$ 6Page et al. [76]115333.15 $6.6-103.4$ 10Secuianu et al. [32]116335.65 $8.4-114.6$ 12Joung et al. [67]117338.15 $54.1-119.4$ 8Roskar et al. [61]118342.65 $30.1-127.4$ 6Reighard et al. [58]120343.15 $125.85-125.85$ 7Page et al. [76]21348.15 $5.0-132.0$ 17Semenova et al. [34]22348.15 $6.89-69.71$ 9Krichevskii and Lebedeva [4'.23352.60 $8.3-140.3$ 9Leu et al. [75]24352.95 $34.1-140.4$ 6Reighard et al. [58]25353.15 $15.2-131.2$ 8Secuianu et al. [32]27353.20 $5.73-78.73$ 16Tsuji and Hongo [77]28354.35 $7.99-92.59$ 8Xia et al. [76]311363.15 $145.40-147.83$ 5Page et al. [76]333 373.15 $38.1-154.2$ 11Hong and Kobayashi [40]134 373.15 30152.80 3Page et al. [76]333 373.15 30154.2 12Brunner et al. [55]136 373.15 50155.0 6Zhu et al. [74]137 373.15 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
112330.03 $86.20-107.10$ 4Sato et al. [64]113332.6526.3-111.96Reighard et al. [58]114333.15105.78-109.946Page et al. [76]115333.156.6-103.410Secuianu et al. [32]116335.658.4-114.612Joung et al. [67]117338.1554.1-119.48Roskar et al. [61]18342.6530.1-127.46Reighard et al. [58]19342.806.7-124.014Joung et al. [67]20343.15125.85-125.857Page et al. [76]21348.155.0-132.017Semenova et al. [34]22348.156.89-69.719Leu et al. [77]23352.608.3-140.39Leu et al. [76]24352.9534.1-140.46Reighard et al. [58]25353.1515.7-131.28Secuianu et al. [32]26353.1515.2-131.28Secuianu et al. [32]27353.205.73-78.7316Tsuji and Hongo [77]28354.357.99-92.598Xia et al. [76]29362.5538.1-154.06Reighard et al. [58]30363.15145.40-147.835Page et al. [76]31363.159.67-85.648Naidoo et al. [46]32372.7542.2-154.75Reighard et al. [55]33373.1520.1-154.212Brunner et al. [55]33 <td>ш</td> <td>330.00</td> <td>6.9-106.46</td> <td>13</td> <td>Hong and Kobayashi [40]</td>	ш	330.00	6.9-106.46	13	Hong and Kobayashi [40]
113332.6526.3-111.96Reighard et al. [58]114333.15105.78-109.946Page et al. [76]115333.156.6-103.410Secuianu et al. [32]116335.658.4-114.612Joung et al. [67]117338.1554.1-119.48Roskar et al. [61]118342.6530.1-127.46Reighard et al. [58]19342.806.7-124.014Joung et al. [67]20343.15125.85-125.857Page et al. [76]21348.155.0-132.017Semenova et al. [34]22348.156.89-69.719Krichevskii and Lebedeva [4'.23352.608.3-140.39Leu et al. [75]24352.9534.1-140.46Reighard et al. [58]25353.15137.70-138.925Page et al. [76]26353.1515.2-131.28Secuianu et al. [32]27353.205.73-78.7316Tsuji and Hongo [77]28354.357.99-92.598Xia et al. [72]29362.5538.1-154.06Reighard et al. [58]30363.15145.40-147.835Page et al. [76]31363.159.67-85.648Naidoo et al. [46]32372.7542.2-154.75Reighard et al. [58]33373.1520.1-154.211Hong and Kobayashi [40]34373.1515.0-648Naidoo et al. [46]<	12	330.03	86.20-107.10	4	Sato et al. [64]
114333.15105.78-109.946Page et al. [76]115333.156.6-103.410Secuianu et al. [32]116335.658.4-114.612Joung et al. [67]117338.1554.1-119.48Roskar et al. [61]118342.6530.1-127.46Reighard et al. [58]119342.806.7-124.014Joung et al. [67]20343.15125.85-125.857Page et al. [76]21348.155.0-132.017Semenova et al. [34]22348.156.89-69.719Krichevskii and Lebedeva [4'.23352.608.3-140.39Leu et al. [76]24352.9534.1-140.46Reighard et al. [58]25353.15137.70-138.925Page et al. [76]26353.1515.2-131.28Secuianu et al. [32]27353.205.73-78.7316Tsuji and Hongo [77]28354.357.99-92.598Xia et al. [76]29362.5538.1-154.06Reighard et al. [58]30363.15145.40-147.835Page et al. [58]33373.1538.1-154.211Hong and Kobayashi [40]134373.1552.80-155.06Zhu et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]	13	332.65	26.3-111.9	6	Reighard et al. [58]
115333.156.6-103.410Secuianu et al. [32]116335.658.4-114.612Joung et al. [67]117338.1554.1-119.48Roskar et al. [61]118342.6530.1-127.46Reighard et al. [58]119342.806.7-124.014Joung et al. [67]20343.15125.85-125.857Page et al. [76]21348.155.0-132.017Semenova et al. [34]22348.156.89-69.719Krichevskii and Lebedeva [4'.23352.608.3-140.39Leu et al. [75]24352.9534.1-140.46Reighard et al. [32]25353.15137.70-138.925Page et al. [76]26353.1515.2-131.28Secuianu et al. [32]27353.205.73-78.7316Tsuji and Hongo [77]28354.357.99-92.598Xia et al. [72]29362.5538.1-154.06Reighard et al. [58]30363.15145.40-147.835Page et al. [76]31363.159.67-85.648Naidoo et al. [46]32372.7542.2-154.75Reighard et al. [58]13373.1538.1-154.211Hong and Kobayashi [40]134373.1515.280-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.1521.57-120.689Naidoo et al. [46] <td>14</td> <td>333.15</td> <td>105.78-109.94</td> <td>6</td> <td>Page et al. [76]</td>	14	333.15	105.78-109.94	6	Page et al. [76]
116335.658.4-114.612Joung et al. [67]117338.1554.1-119.48Roskar et al. [61]118342.6530.1-127.46Reighard et al. [58]119342.806.7-124.014Joung et al. [67]20343.15125.85-125.857Page et al. [76]21348.155.0-132.017Semenova et al. [34]22348.156.89-69.719Krichevskii and Lebedeva [4'.23352.608.3-140.39Leu et al. [75]24352.9534.1-140.46Reighard et al. [58]25353.15137.70-138.925Page et al. [76]26353.1515.2-131.28Secuianu et al. [32]27353.205.73-78.7316Tsuji and Hongo [77]28354.357.99-92.598Xia et al. [72]29362.5538.1-154.06Reighard et al. [58]30363.15145.40-147.835Page et al. [76]31363.159.67-85.648Naidoo et al. [46]33373.1530.1-154.211Hong and Kobayashi [40]34373.1515.280-152.803Page et al. [76]35373.1520.1-154.212Brunner et al. [55]36373.155.0-165.06Zhu et al. [76]38373.1521.57-120.689Naidoo et al. [46]39383.15155.33-155.643Page et al. [76]<	15	333.15	6.6-103.4	10	Secuianu et al. [32]
117338.15 $54.1-119.4$ 8Roskar et al. [61]118 342.65 $30.1-127.4$ 6Reighard et al. [58]119 342.80 $6.7-124.0$ 14Joung et al. [67]20 343.15 $125.85-125.85$ 7Page et al. [76]21 348.15 $5.0-132.0$ 17Semenova et al. [34]22 348.15 $6.89-69.71$ 9Krichevskii and Lebedeva [4'.23 352.60 $8.3-140.3$ 9Leu et al. [75]24 352.95 $34.1-140.4$ 6Reighard et al. [58]25 353.15 $137.70-138.92$ 5Page et al. [76]26 353.15 $15.2-131.2$ 8Secuianu et al. [32]27 353.20 $5.73-78.73$ 16Tsuji and Hongo [77]28 354.35 $7.99-92.59$ 8Xia et al. [76]29 362.55 $38.1-154.0$ 6Reighard et al. [58]30 363.15 $145.40-147.83$ 5Page et al. [76]31 363.15 $9.67-85.64$ 8Naidoo et al. [46]32 372.75 $42.2-154.7$ 5Reighard et al. [58]33 373.15 $20.1-154.2$ 11Hong and Kobayashi [40]134 373.15 50165.0 17Semenova et al. [76]135 373.15 $20.1-154.2$ 12Brunner et al. [55]136 373.15 $15.33+155.64$ 3Page et al. [76]137 373.15 $85.0-155.0$ 6Zhu et al. [74]1	16	335.65	8.4-114.6	12	Joung et al. [67]
118342.6530.1-127.46Reighard et al. $[58]$ 19342.80 $6.7-124.0$ 14Joung et al. $[67]$ 20343.15125.85-125.857Page et al. $[76]$ 21348.15 $5.0-132.0$ 17Semenova et al. $[34]$ 122348.15 $6.89-69.71$ 9Krichevskii and Lebedeva $[4'.$ 23352.60 $8.3-140.3$ 9Leu et al. $[75]$ 124352.9534.1-140.46Reighard et al. $[58]$ 25353.15137.70-138.925Page et al. $[76]$ 26533.1515.2-131.28Secuianu et al. $[32]$ 27353.20 $5.73-78.73$ 16Tsuji and Hongo $[77]$ 28354.357.99-92.598Xia et al. $[72]$ 29362.5538.1-154.06Reighard et al. $[58]$ 30363.15145.40-147.835Page et al. $[76]$ 31363.159.67-85.648Naidoo et al. $[46]$ 32372.7542.2-154.75Reighard et al. $[58]$ 33373.1538.1-154.211Hong and Kobayashi $[40]$ 134373.1510.1-154.212Brunner et al. $[55]$ 136373.155.0-165.017Semenova et al. $[46]$ 137373.1520.5-155.06Zhu et al. $[76]$ 143398.1510.5-155.08Xia et al. $[76]$ 144423.1536.7-161.311Brunner et al. $[55]$ 144395.0016.6	17	338.15	54.1-119.4	8	Roskar et al. [61]
119342.80 $6.7-124.0$ 14Joung et al. [67]120343.15125.85-125.857Page et al. [76]121348.155.0-132.017Semenova et al. [34]122348.15 $6.89-69.71$ 9Krichevskii and Lebedeva [4'.123352.60 $8.3-140.3$ 9Leu et al. [75]124352.95 $34.1-140.4$ 6Reighard et al. [58]125353.15 $137.70-138.92$ 5Page et al. [76]126353.15 $15.2-131.2$ 8Secuianu et al. [32]127353.20 $5.73-78.73$ 16Tsuji and Hongo [77]128354.35 $7.99-92.59$ 8Xia et al. [72]129362.5538.1-154.06Reighard et al. [58]130363.15145.40-147.835Page et al. [76]131363.15 $9.67-85.64$ 8Naidoo et al. [46]132 372.75 $42.2-154.7$ 5Reighard et al. [58]133 373.15 $35.0-165.0$ 17Semenova et al. [40]134 373.15 $5.0-165.0$ 17Semenova et al. [34]137 373.15 $85.0-155.0$ 6Zhu et al. [76]140 393.15 $144.39-145.60$ 3Page et al. [76]141 394.20 $10.3-165.0$ 9Naidoo et al. [46]139 383.15 $155.33-155.64$ 3Page et al. [76]141 394.20 $10.3-165.0$ 9Leu et al. [76]141 394.20 <t< td=""><td>18</td><td>342.65</td><td>30.1-127.4</td><td>6</td><td>Reighard et al. [58]</td></t<>	18	342.65	30.1-127.4	6	Reighard et al. [58]
120343.15125.85-125.857Page et al. [76]121348.155.0-132.017Semenova et al. [34]122348.156.89-69.719Krichevskii and Lebedeva [4".123352.608.3-140.39Leu et al. [75]124352.9534.1-140.46Reighard et al. [58]125353.15137.70-138.925Page et al. [76]126353.1515.2-131.28Secuianu et al. [32]127353.205.73-78.7316Tsuji and Hongo [77]128354.357.99-92.598Xia et al. [76]130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [74]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]140393.15144.39-145.603Page et al. [76]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [7	19	342.80	6.7-124.0	14	Joung et al. [67]
121348.155.0-132.017Semenova et al. [34]122348.156.89-69.719Krichevskii and Lebedeva [4'.123352.608.3-140.39Leu et al. [75]124352.9534.1-140.46Reighard et al. [58]125353.15137.70-138.925Page et al. [76]126353.1515.2-131.28Secuianu et al. [32]127353.205.73-78.7316Tsuji and Hongo [77]128354.357.99-92.598Xia et al. [72]129362.5538.1-154.06Reighard et al. [58]130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [46]139383.15155.33-155.643Page et al. [76]140393.15144.39-145.603Page et al. [76]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [74]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and K	20	343.15	125.85-125.85	7	Page et al. [76]
122348.15 $6.89-69.71$ 9Krichevskii and Lebedeva [4'.123352.60 $8.3-140.3$ 9Leu et al. [75]124352.95 $34.1-140.4$ 6Reighard et al. [58]125353.15 $137.70-138.92$ 5Page et al. [76]126353.15 $15.2-131.2$ 8Secuianu et al. [32]127353.20 $5.73-78.73$ 16Tsuji and Hongo [77]128 354.35 $7.99-92.59$ 8Xia et al. [72]129 362.55 $38.1-154.0$ 6Reighard et al. [58]130 363.15 $145.40-147.83$ 5Page et al. [76]131 363.15 $9.67-85.64$ 8Naidoo et al. [46]132 372.75 $42.2-154.7$ 5Reighard et al. [58]133 373.15 $38.1-154.2$ 11Hong and Kobayashi [40]134 373.15 $152.80-152.80$ 3Page et al. [76]135 373.15 $20.1-154.2$ 12Brunner et al. [55]136 373.15 $21.57-120.68$ 9Naidoo et al. [46]139 383.15 $155.33-155.64$ 3Page et al. [76]141 394.20 $10.3-165.0$ 9Leu et al. [76]141 394.20 $10.3-165.0$ 9Leu et al. [76]143 398.15 $10.0-185.0$ 18Semenova et al. [34]144 423.15 $36.7-161.3$ 11Hong and Kobayashi [40]145 423.15 $36.7-161.3$ 11Hong and Kobayashi [40]	121	348.15	5.0-132.0	17	Semenova et al. [34]
123352.60 $8.3-140.3$ 9Leu et al. [75]124352.95 $34.1-140.4$ 6Reighard et al. [58]125 353.15 $137.70-138.92$ 5Page et al. [76]126 353.15 $15.2-131.2$ 8Secuianu et al. [32]127 353.20 $5.73-78.73$ 16Tsuji and Hongo [77]128 354.35 $7.99-92.59$ 8Xia et al. [72]129 362.55 $38.1-154.0$ 6Reighard et al. [58]130 363.15 $145.40-147.83$ 5Page et al. [76]131 363.15 $9.67-85.64$ 8Naidoo et al. [46]132 372.75 $42.2-154.7$ 5Reighard et al. [58]133 373.15 $38.1-154.2$ 11Hong and Kobayashi [40]134 373.15 $152.80-152.80$ 3Page et al. [76]135 373.15 $20.1-154.2$ 12Brunner et al. [55]136 373.15 $5.0-165.0$ 17Semenova et al. [34]137 373.15 $85.0-155.0$ 6Zhu et al. [74]138 373.15 $21.57-120.68$ 9Naidoo et al. [46]139 383.15 $155.33-155.64$ 3Page et al. [76]141 394.20 $10.3-165.0$ 9Leu et al. [75]142 395.00 $16.64-97.35$ 8Xia et al. [72]143 398.15 $10.0-185.0$ 18Semenova et al. [34]144 423.15 $36.7-161.3$ 11Hong and Kobayashi [40]	22	348.15	6.89-69.71	9	Krichevskii and Lebedeva [4]
124352.9534.1-140.46Reighard et al. [58]125353.15137.70-138.925Page et al. [76]126353.1515.2-131.28Secuianu et al. [32]127353.205.73-78.7316Tsuji and Hongo [77]128354.357.99-92.598Xia et al. [72]129362.5538.1-154.06Reighard et al. [58]130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [76]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [72]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and Kobayashi [40]145423.1570.0-162.07Zhu et al. [74]147473.1575.2-129.34Hong and Kobayashi	123	352.60	8.3-140.3	9	Leu et al. [75]
125353.15137.70-138.925Page et al. [76]126353.1515.2-131.28Secuianu et al. [32]127353.205.73-78.7316Tsuji and Hongo [77]128354.357.99-92.598Xia et al. [72]129362.5538.1-154.06Reighard et al. [58]130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [76]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [72]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and Kobayashi [40]145423.1570.0-162.07Zhu et al. [74]147473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Hong and Kobayas	124	352.95	34.1-140.4	6	Reighard et al. [58]
126353.1515.2-131.28Secuianu et al. [32]127353.205.73-78.7316Tsuji and Hongo [77]128354.357.99-92.598Xia et al. [72]129362.5538.1-154.06Reighard et al. [58]130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [76]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]141394.2010.3-165.09Leu et al. [76]142395.0016.64-97.358Xia et al. [72]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and Kobayashi [40]145423.1570.0-162.07Zhu et al. [74]147473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Brunner et a	125	353.15	137.70-138.92	5	Page et al. [76]
127353.20 $5.73-78.73$ 16Tsuji and Hongo [77]128354.35 $7.99-92.59$ 8Xia et al. [72]129362.5538.1-154.06Reighard et al. [58]130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [76]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [72]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and Kobayashi [40]145423.1570.0-162.07Zhu et al. [74]147473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Brunner et al. [55]149473.1570.0-130.05Zhu et al. [74]149473.1570.0-130.05Zhu et al. [74] </td <td>126</td> <td>353.15</td> <td>15.2-131.2</td> <td>8</td> <td>Secuianu et al. [32]</td>	126	353.15	15.2-131.2	8	Secuianu et al. [32]
128354.357.99-92.598Xia et al. [72]129362.5538.1-154.06Reighard et al. [58]130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [74]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]140393.15144.39-145.603Page et al. [76]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [72]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and Kobayashi [40]145423.1570.0-162.07Zhu et al. [74]147473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Brunner et al. [55]149473.1570.0-130.05Zhu et al. [74]149473.1570.0-137.58Lau et al. [74] <td>127</td> <td>353.20</td> <td>5.73-78.73</td> <td>16</td> <td>Tsuji and Hongo [77]</td>	127	353.20	5.73-78.73	16	Tsuji and Hongo [77]
129 362.55 $38.1-154.0$ 6Reighard et al. [58]130 363.15 $145.40-147.83$ 5Page et al. [76]131 363.15 $9.67-85.64$ 8Naidoo et al. [46]132 372.75 $42.2-154.7$ 5Reighard et al. [58]133 373.15 $38.1-154.2$ 11Hong and Kobayashi [40]134 373.15 $152.80-152.80$ 3Page et al. [76]135 373.15 $20.1-154.2$ 12Brunner et al. [55]136 373.15 $20.1-154.2$ 12Brunner et al. [34]137 373.15 $85.0-165.0$ 17Semenova et al. [34]138 373.15 $21.57-120.68$ 9Naidoo et al. [46]139 383.15 $155.33-155.64$ 3Page et al. [76]140 393.15 $144.39-145.60$ 3Page et al. [76]141 394.20 $10.3-165.0$ 9Leu et al. [75]142 395.00 $16.64-97.35$ 8Xia et al. [72]143 398.15 $10.0-185.0$ 18Semenova et al. [34]144 423.15 $36.7-161.3$ 11Hong and Kobayashi [40]145 423.15 $75.2-129.3$ 4Hong and Kobayashi [40]148 473.15 $75.2-129.3$ 4Brunner et al. [55]149 473.15 $75.2-129.3$ 4Brunner et al. [55]149 473.15 $75.2-129.3$ 4Brunner et al. [55]149 473.15 $75.2-129.3$ 4Brunner et al.	128	354.35	7.99-92.59	8	Xia et al. [72]
130363.15145.40-147.835Page et al. [76]131363.159.67-85.648Naidoo et al. [46]132372.7542.2-154.75Reighard et al. [58]133373.1538.1-154.211Hong and Kobayashi [40]134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [74]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]140393.15144.39-145.603Page et al. [76]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [72]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and Kobayashi [40]145423.1570.0-162.07Zhu et al. [74]147473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Brunner et al. [55]149473.1575.2-129.34Brunner et al. [55]149473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Brunner	129	362.55	38.1-154.0	6	Reighard et al. [58]
131 363.15 9.67-85.64 8 Naidoo et al. [46] 132 372.75 42.2-154.7 5 Reighard et al. [58] 133 373.15 38.1-154.2 11 Hong and Kobayashi [40] 134 373.15 152.80-152.80 3 Page et al. [76] 135 373.15 20.1-154.2 12 Brunner et al. [55] 136 373.15 5.0-165.0 17 Semenova et al. [34] 137 373.15 85.0-155.0 6 Zhu et al. [74] 138 373.15 21.57-120.68 9 Naidoo et al. [46] 139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [76] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 70.0-162.0 7	130	363.15	145.40-147.83	5	Page et al. [76]
132 372.75 42.2-154.7 5 Reighard et al. [58] 133 373.15 38.1-154.2 11 Hong and Kobayashi [40] 134 373.15 152.80-152.80 3 Page et al. [76] 135 373.15 20.1-154.2 12 Brunner et al. [55] 136 373.15 5.0-165.0 17 Semenova et al. [34] 137 373.15 85.0-155.0 6 Zhu et al. [74] 138 373.15 21.57-120.68 9 Naidoo et al. [46] 139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 <t< td=""><td>131</td><td>363.15</td><td>9.67-85.64</td><td>8</td><td>Naidoo et al. [46]</td></t<>	131	363.15	9.67-85.64	8	Naidoo et al. [46]
133 373.15 38.1-154.2 11 Hong and Kobayashi [40] 134 373.15 152.80-152.80 3 Page et al. [76] 135 373.15 20.1-154.2 12 Brunner et al. [55] 136 373.15 5.0-165.0 17 Semenova et al. [34] 137 373.15 85.0-155.0 6 Zhu et al. [74] 138 373.15 21.57-120.68 9 Naidoo et al. [46] 139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 <t< td=""><td>132</td><td>372.75</td><td>42.2-154.7</td><td>5</td><td>Reighard et al. [58]</td></t<>	132	372.75	42.2-154.7	5	Reighard et al. [58]
134373.15152.80-152.803Page et al. [76]135373.1520.1-154.212Brunner et al. [55]136373.155.0-165.017Semenova et al. [34]137373.1585.0-155.06Zhu et al. [74]138373.1521.57-120.689Naidoo et al. [46]139383.15155.33-155.643Page et al. [76]140393.15144.39-145.609Leu et al. [77]141394.2010.3-165.09Leu et al. [75]142395.0016.64-97.358Xia et al. [72]143398.1510.0-185.018Semenova et al. [34]144423.1536.7-161.311Hong and Kobayashi [40]145423.1570.0-162.07Zhu et al. [74]147473.1575.2-129.34Hong and Kobayashi [40]148473.1575.2-129.34Brunner et al. [55]149473.1570.0-130.05Zhu et al. [74]149473.1575.2-129.34Brunner et al. [55]149473.1575.2-129.34Brunner et al. [55] </td <td>133</td> <td>373.15</td> <td>38.1-154.2</td> <td>11</td> <td>Hong and Kobayashi [40]</td>	133	373.15	38.1-154.2	11	Hong and Kobayashi [40]
135 373.15 20.1-154.2 12 Brunner et al. [55] 136 373.15 5.0-165.0 17 Semenova et al. [34] 137 373.15 85.0-155.0 6 Zhu et al. [74] 138 373.15 21.57-120.68 9 Naidoo et al. [46] 139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 149 473.15 70.2.129.3 4 Brun	134	373.15	152.80-152.80	3	Page et al. [76]
136 373.15 5.0-165.0 17 Semenova et al. [34] 137 373.15 85.0-155.0 6 Zhu et al. [74] 138 373.15 21.57-120.68 9 Naidoo et al. [46] 139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 149 473.15 70.0-130.0 5 Zhu	135	373.15	20.1-154.2	12	Brunner et al. [55]
137 373.15 85.0-155.0 6 Zhu et al. [74] 138 373.15 21.57-120.68 9 Naidoo et al. [46] 139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Law et al. [74]	136	373.15	5.0-165.0	17	Semenova et al. [34]
138 373.15 21.57-120.68 9 Naidoo et al. [46] 139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 L	137	373.15	85.0-155.0	6	Zhu et al. [74]
139 383.15 155.33-155.64 3 Page et al. [76] 140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Law et al. [74]	138	373.15	21.57-120.68	9	Naidoo et al. [46]
140 393.15 144.39-145.60 3 Page et al. [76] 141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Law et al. [74]	139	383.15	155.33-155.64	3	Page et al. [76]
141 394.20 10.3-165.0 9 Leu et al. [75] 142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	140	393.15	144.39-145.60	3	Page et al. [76]
142 395.00 16.64-97.35 8 Xia et al. [72] 143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	141	394.20	10.3-165.0	9	Leu et al. [75]
143 398.15 10.0-185.0 18 Semenova et al. [34] 144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	142	395.00	16.64-97.35	8	Xia et al. [72]
144 423.15 36.7-161.3 11 Hong and Kobayashi [40] 145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Law et al. [75]	143	398.15	10.0-185.0	18	Semenova et al. [34]
145 423.15 36.7-161.3 11 Brunner et al. [55] 146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	144	423.15	36.7-161.3	11	Hong and Kobayashi [40]
146 423.15 70.0-162.0 7 Zhu et al. [74] 147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	145	423.15	36.7-161.3	11	Brunner et al. [55]
147 473.15 75.2-129.3 4 Hong and Kobayashi [40] 148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	146	423.15	70.0-162.0	7	Zhu et al. [74]
148 473.15 75.2-129.3 4 Brunner et al. [55] 149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	147	473.15	75.2-129.3	4	Hong and Kobayashi [40]
149 473.15 70.0-130.0 5 Zhu et al. [74] 150 477.60 52.9-127.5 8 Lew et al. [75]	148	473.15	75.2-129.3	4	Brunner et al. [55]
150 477.60 52.9-127.5 8 Level 1751	149	473.15	70.0-130.0	5	Zhu et al. [74]
130 477.00 52.3-127.5 8 Lett et al. [75]	150	477.60	52.9-127.5	8	Leu et al. [75]

In a previous paper [32], GEOS calculations with the set of parameters ($k_{12} = 0.030$, $l_{12} = 0.007$) were done for 75 data sets from the literature and new measured experimental data reported in that work, at temperatures between 230 and 477.6 K. In the present paper, 150 data sets (except data sets were only the vapour phase was reported) with 1400 experimental points were considered, as new measurements were reported in the literature since our previous paper and, additionally, the DETHERM database [35] was accessed. The experimental conditions of the available information for the carbon dioxide + methanol binary system are summarized in table 1. PR and SRK EoS with an unique set of parameters ($k_{12} = 0.018$, $l_{12} = 0.005$) were used to calculate all available data (table 1). The average absolute deviations in bubble point pressure (AADP, %) and vapor phase compositions (AADY, %) for the

A

Fig. 7. Comparison of literature VLE data and calculations by thermodynamic models for carbon dioxide + methanol at different temperatures: symbols, experimental data; lines, predictions by GEOS ($k_{12} = 0.030$, $l_{12} = 0.007$), PR, and SRK ($k_{12} = 0.018$, $l_{12} = 0.005$) respectively.

carbon dioxide + methanol systems were also calculated for the three thermodynamic models used by the following equations:

$$ADP(\%) = \frac{1}{N_{\exp}} \sum_{i=1}^{N_{\exp}} \left| \frac{P_i^{\exp} - P_i^{calc}}{P_i^{\exp}} \right| \cdot 100$$
(18)

$$AADY(\%) = \frac{1}{N_{\text{exp}}} \sum_{i=1}^{N_{\text{exp}}} \left| Y_i^{\text{exp}} - Y_i^{calc} \right| \cdot 100$$
(19)

The best predictions are obtained by GEOS, the overall AADP being for this model 16.4%, followed by SRK (17.0%), and PR (19.4%). The prediction results by SRK and PR and the experimental data are plotted in figures 2-7. As in our previous paper [32] we shown the GEOS predictions,

the results by this model are illustrated only in the figures (3 (b), 4 (b), 5, 6 (a), 7) which are not very busy. It can be also remarked that the experimental data are very scatter at all temperatures (figs. 2-7), though the system received much attention.

Taking into account the semi predictive approach used in this work, the single sets of interaction parameters leads to satisfactory prediction of VLE for the carbon dioxide + methanol system. Compared to a correlation method, the deviations between experimental data and modeling results are rather high. A temperature-dependent k_{12} in a semi predictive approach was used in an earlier paper [31]. As shown in that work, obtaining the temperature dependence of k_{12} is difficult and does not lead to better results. However, even the errors are significantly smaller when correlating the experimental data, at lower temperatures, the calculation leads also to a false liquidliquid splitting (as a maximum and a minimum in the bubble-point curves). This behaviour can be observed with other models too (different equation of state coupled with classical and G^E mixing rules). This is a known problem in correlating such systems. Therefore, the proposed approach in this work is justified to avoid the false liquidliquid splitting and to represent correctly the phase behaviour.

Conclusions

Three thermodynamic models with classical van der Waals (two-parameter conventional mixing rule, 2PCMR) mixing rules were used to compare the phase behaviour of the carbon dioxide + methanol binary system. One set of interaction parameters was used to predict the critical and sub-critical phase behaviour in the binary mixture carbon dioxide + methanol in a wide range of temperatures. The predicted results were compared with all the available literature data for carbon dioxide + methanol binary systems. The phase behaviour was satisfactory reproduced, taking into account the semi predictive procedure used.

Acknowledgements: This work has been funded by the Sectoral Operational Programme Human Resources Development 2007"2013 of the Romanian Ministry of Labour, Family, and Social Protection through the Financial Agreement POSDRU/107/1.5/S/76903.

List of symbols

a, b, c, d	- Equation of state parameters
CPM	- Critical Pressure Maximum
EoS	- Equation of State
GEOS	- General cubic equation of state
k_{12}, l_{12}	- Binary interaction parameters
L	- Liquid
Lit.	- Literature
m, α_{c}	- GEOS parameters
NEXP	- Number of experimental points
Р	- Pressure
2 PCMR	- Two-parameters conventional mixing rule
PR	- Peng-Robinson equation of state
SRK	- Soave-Redlich-Kwong equation of state
Т	- Temperature
UCEP	- Upper citical endpoint
V	- Volume
VLE	- Vapor-Liquid Equilibria
x, y	- Mole fractions

References

1. HENDRIKS, E., KONTOGEORGIS, G.M., DOHRN, R., DE HEMPTINNE, J.-C., ECONOMOU, I.G., FELE ZILNIK, L., VESOVIC, V., Ind. Eng. Chem. Res., **49**, 2010, p. 11131.

- 2. DOHRN, R., BRUNNER, G., Fluid Phase Equilib., 106, 1995, p. 213.
- 3. CHRISTOV, M., DOHRN, R., Fluid Phase Equilib., **202**, 2002, p. 153.
- 4. DOHRN, R., PEPER, S., FONSECA, J.M.S, Fluid Phase Equilib., 288, 2010, p. 1.
- 5. FONSECA, J.M.S., DOHRN, R., PEPER, S., Fluid Phase Equilib., **300**, 2011, p. 1.
- 6. GEANĂ, D., Rev. Chim. (Bucharest), 37, 1986, p. 303.
- 7. GEANĂ, D., Rev. Chim. (Bucharest), 37, 1986, p. 951
- 8. GEANĂ, D., Feroiu, V., Fluid Phase Equilib., 174, 2000, p. 51.
- 9. FEROIU, V., GEANĂ, D., Fluid Phase Equilib., 207, 2003, p. 283.
- 10. PENG, D.Y.; ROBINSON, D.B., Ind. Eng. Chem. Fundam., 15, 1976, p. 59.
- 11. SOAVE, G., Chem. Eng. Sci., 27, 1972, p. 1197.
- 12. SIMA, S., FEROIU, V., GEANĂ, D., Fluid Phase Equilib., **325**, 2012, p. 45.

13. SECUIANU, C., QIAN, J., PRIVAT, R., JAUBERT, J.-N., Ind. Eng. Chem. Res., **51**, 2012, p. 11284.

- 14. SECUIANU, C., FEROIU, V., GEANĂ, D., J. Chem. Eng. Data, 56, 2011, p. 5000.
- 15. SIMA, S., FEROIU, V., GEANĂ, D., J. Chem. Eng. Data, **56**, 2011, p. 5052.
- 16. SECUIANU, C., FEROIU, V., GEANĂ, D., J. Supercrit. Fluid., 55, 2010, p. 653.
- 17. SECUIANU, C., FEROIU, V., GEANĂ, D., J. Chem. Thermodyn., 42, 2010, p. 1286.
- 18. SECUIANU, C., FEROIU, V., GEANĂ, D., Rev. Chim.(Bucharest), **60**, 2009, p. 472.
- 19. SECUIANU, C., FEROIU, V., GEANĂ, D., J. Chem. Eng. Data, **54**, 2009, p. 1493.
- 20. SECUIANU, C., FEROIU, V., GEANĂ, D., Cent. Eur. J. Chem., 7, 2009, p. 1.
- 21. SECUIANU, C., FEROIU, V., GEANĂ, D., J. Supercrit. Fluid, **47**, 2008, p. 109.
- 22. SECUIANU, C., FEROIU, V., GEANĂ, D., J. Chem. Eng. Data, **53**, 2008, p. 2444.
- 23. SECUIANU, C., FEROIU, V., GEANĂ, D., Fluid Phase Equilib., **270**, 2008, p. 109.
- 24.GEANĂ, D., RUS, L., Proc. Romanian Int. Conference on Chemistry & Chemical Engineering (RICCCE XIV), Bucharest, Romania, 2, 2005, p. 170.
- 25. *** http://gpec.phasety.com
- 26. HEIDEMANN, R.A., KHALIL, A.M., AIChE J., 26, 1980, p. 769.
- 17. STOCKFLETH, R., DOHRN, R., Fluid Phase Equilib., **145**, 1998, p. 43.
- 28. VAN KONYNENBURG, P.H., SCOTT, R.L., Philos. Trans. Royal Soc. London, Ser. A **298**, 1980, p. 495.

29. DE LOOS, TH.W., in: Kiran, E., Levelt Sengers, J.M.H., (Eds.), Supercritical Fluids: Fundamentals for Application, Kluwer Academic Publishers, Dordrecht, Netherlands, 1994, p. 65.

30. POLISHUK, I., WISNIAK, J., SEGURA, H., Chem. Eng. Sci., **56**, 2001, p. 6485.

31.POLISHUK, I., WISNIAK, J., SEGURA, H., YELASH, L.V., KRASKA, T., Fluid Phase Equilib., **172**, 2000, p. 1.

32. SECUIANU, C., FEROIU, V., GEANĂ, D., Int. J. Liq. State Sci., **2**, 2010, p. 1.

ZIEGLER, J.W., CHESTER, T.L., INNIS, D.P., PAGE, S.B., DORSEY, J.G., in: Hutchenson, E.K.H., Foster, N.R., (Eds.), Innovations in supercritical fluids, science and technology, Washington, 1995, p 93.
Semenova, A.I., Emelianova, E.A., Tsimmerman, S.S., Tsiklis, D.S., Russ. J. Phys. Chem., 53, 1979, p. 2502.

35. DECHEMA Database, Frankfurt, Germany

36. SHENDEREI, E.R., ZELVENSKII, YA.D., IVANOVSKII, F.P., Khim. Promst. Moscow, 4, 1959, p. 328.

- 37. SCHNEIDER, R., TU Berlin Dissertation, Berlin, Germany, 1978.
- 38. KATAYAMA, T., NITTA, T., Gmelin Handbuch, Vol C-14, 568.
- 39. TAKEUCHI, K., INOUE, I., Kagaku Kogaku, 44, 1908, p. 292.
- 40. HONG, J.H., KOBAYASHI, R., Fluid Phase Equilib., 41, 1988, p. 269.

42. CHANG, T., ROUSSEAU, R.W., Fluid Phase Equilib., 23, 1985, p. 243.

43. YORIZANE, M., SADAMOTO, S., MASUOKA, H., ETO, Y., Kogyo Kagaku Zasshi, **72**, 1969, p. 2174.

44. ZECK, S., TU Berlin Dissertation, Berlin, Germany, 1984.

45. FERRELL, J.K., ROUSSEAU, R.W., BASS, D.G., Report EPA 600/7-79/097, PB-296707, North Carolina State Univ., 1979.

46. NAIDOO, P., RAMJUGERNATH, D., RAAL, J.D., Fluid Phase Equilib., **269**, 2008, p. 104.

47. KRICHEVSKII, I.R., LEBEDEVA, E.S., Zh. Fiz. Khim., 21, 1947, p. 715.

48. BEZANEHTAK, K., COMBES, G.B., DEHGHANI, F., FOSTER, N.R., TOMASKO, D.L., J. Chem. Eng. Data, **47**, 2002, p.161.

49. GUI, X., TANG, Z.G., FEI, W., J. Chem. Eng. Data, **56**, 2011, p. 2420. 50. CHANG, C.J., DAY, C.-Y., KO, C.-M., CHIU, K.-L., Fluid Phase Equilib., **131**, 1997, p. 243.

51. CHANG, C.J., CHIU, K.-L., DAY, C.-Y., J. Sup. Fluid., **12**, 1998, p. 223. 52. ROUSSEAU, R.W., MATANGE, J.N., FERRELL, J.K., AIChE J., **27**, 1981, p. 605.

53. KATAYAMA, T., OHGAKI, K., MAEKAWA, G., GOTO, M., NAGANO, T., J. Chem. Eng. Jap., **8**, 1975, p. 89.

54. OHGAKI, K., KATAYAMA, T., J. Chem. Eng. Data, 21, 1976, p. 53.

55. BRUNNER, E., HUELTENSCHMIDT, W., SCHLICHTHÄRLE, G., J. Chem. Thermodyn., **19**, 1987, p. 273.

56. SECUIANU, C., FEROIU, V., GEANĂ, D., Rev. Chim. (Bucharest), 54, 2003, p. 874.

57. LAURSEN, T., RASMUSSEN, P., ANDERSEN, S.I., J. Chem. Eng. Data, 47, 2002, p. 198.

58. REIGHARD, T.S., LEE, S.T., OLESIK, S.V., Fluid Phase Equilib., **123**, 1996, p. 215.

59. SCHWINGHAMMER, S., SIEBENHOFER, M., MARR, R., J. Supercrit. Fluid., **38**, 2006, p. 1.

60. PINTO, L.F., NDIAYE, P.M., RAMOS, L.P., CORAZZA, M.L., J. Supercrit. Fluid., **59**, 2011, p. 1.

61. ROSKAR, V., DOMBRO, R.A., PRENTICE, G.A., WESTGATE, C.R., MCHUGH, M.A., Fluid Phase Equilib., **77**, 1992, p. 241.

62. SNEDEKER, R.A., Princeton University Thesis, USA, 1955.

63. ELBACCOUCH, M.M., RAYMOND, M.B., ELLIOTT, J.R., J. Chem. Eng. Data, **45**, 2000, p. 280.

64. SATO, Y., HOSAKA, N., YAMAMOTO, K., INOMATA, H., Fluid Phase Equilib., **296**, 2010, p. 25.

65. RAEISSI, S., FLORUSSE, L., PETERS, C.J., J. Supercrit. Fluid., 55, 2010, p. 825.

66. TOCHIGI, K., NAMAE, T., SUGA, T., MATSUDA, H., KURIHARA, K., DOS RAMOS, M.C., MCCABE, C., J. Supercrit. Fluid., **55**, 2010, p. 682. 67. JOUNG, S.N., YOO, C.W., SHIN, H.Y., KIM, S.Y., YOO, K.-P., LEE, C.S., HUH, W.S., Eluid Phage Equilib. **185**, 2001, p. 210.

C.S., HUH, W.S., Fluid Phase Equilib., 185, 2001, p. 219.

68. KODAMA, D., KUBOTA, N., YAMAKI, Y., TANAKA, H., KATO, M., Netsu Bussei, **10**, 1996, p. 16.

69. YOON, J.-H., LEE, H.-S., LEE, H., J. Chem. Eng. Data, **38**, 1993, p. 53.

70. XIE, X., BROWN, J.S., BUSH, D., ECKERT, C.A., J. Chem. Eng. Data, **50**, 2005, p. 780.

71. SUZUKI, K., SUE, H., ITOU, M., SMITH, R.L., INOMATA, H., ARAI, K., SAITO, S., J. Chem. Eng. Data, **35**, 1990, p. 63.

72. XIA, J., JOEDECKE, M., PEREZ-SALADO KAMPS, A., MAURER, G., J. Chem. Eng. Data, **49**, 2004, p. 1756.

73. SECUIANU, C., FEROIU, V., GEANĂ, D., Ann. W.U.T. Series Chemistry, **12**, 2003, p. 393.

74. ZHU, H.-G., TIAN, Y.-L., CHEN, L., FENG, J.-J., FU, H.-F., Gaodeng Xuexiao Huaxue Xuebao, **23**, 2002, p. 1588.

75. LEU, A.-D., CHUNG, S.Y.-K., ROBINSON, D.B., J. Chem. Thermodyn., **23**, 1991, p. 979.

76. PAGE, S.H., GOATES, S.R., LEE, M.L., J. Supercrit. Fluid., 4, 1991, p. 109.

77. TSUJI, T., HONGO, M., Internat. Symp. Thermodyn. Chem. Eng. Ind., Beijing, 1994, p. 457.

78. CHOBANOV, K., TUMA, D., MAURER, G., Fluid Phase Equilib., **294**, 2010, p. 54.

79. LIU, J., QIN, Z., WANG, G., HOU, X., WANG, J., J. Chem. Eng. Data, **48**, 2003, p. 1610.

80. ZHANG, J.C., WU, X.Y., CAO, W.L., Gaodeng Xuexiao Huaxue Xuebao, **23**, 2002, p. 10.

81.YEO, S.-D., PARK, S.-J., KIM, J.-W., KIM, J.-C., J. Chem. Eng. Data, 45, 2000, p. 932.

82. GURDIAL, G.S., FOSTER, N.R., YUN, S.L.J., TILLY, K.D., in: Kiran, E., Brennecke, J., (Eds.), Sup. Fluid Eng. Sci., ACS Symp. Series 514, Washington D.C., Chapter 3, 1993, p. 34.

83. BRUNNER, E., J. Chem. Thermodyn., 17, 1985, p. 671.

84. *** Evaluated Standard Thermophysical Property Values, DIPPR Project 801 full version; Department of Chemistry and Engineering, Brigham Young University, Provo Utah, 2005

Manuscript received: 25.10.2013